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Overview

Barriers
« Project start: Oct 2018 « Absence of physics-based
* Project end: Sep 2021 model fo predict high-

temperature alloy oxidation

« Lack of fundamental alloy
oxidation data (e.g., atomic
mobilities in oxides, oxygen
permeability)

« Percent complete: 15%

« Total project funding: $1,935K

— DOE share: $1,500K

— Costshare: $ 435K
« Awarded for 3 years (FY19-FY21)
« FY 2019: $500K

* ASM International
« Penn State University
« Federal-Mogul Powertrain

%g;gglg{ggg Any proposed future work is subject to change based on funding levels.




Increased exhaust temperature for engine efficiency will
require advanced corrosion/oxidation-resistant alloys
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m Oxidation domaqe N |N751 volves at ~850°C*

*estimated

M.l. Khan et al. Engineering Failure Analysis 85 (2018) 77-88

Natural gas engine operated for 10,000 h
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Strategy to mitigate high-temperature oxidation?
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Thermally grown thin and coherent oxide scales
to protect alloys from extreme environments
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22Cr25NiWCoCu stainless steel 9Cr1Mo steel

Internal oxidation

VP7733-01 20.0kV 13.2mm x1.00k BSECOMP .Ou VP7739-03 20.0kV 12.9mm x1.00k BSE3D

Good Bad
Is it possible to predict high-temperature alloy oxidation?
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First-principles bottom-up design of oxidation-
resistant multi-component alloy is not yet possible
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Alloy Alloy Oxide

thermodynamics | diffusion kinetics § thermodynamics

e alloy phase e precipitate e oxide phase
diagrams coarsening diagrams

Oxide Alloy thermodynamics
o o diffusion kinetics with oxygen
2 ) . s e
* metal cation mobilities e oxygen permeability
e grain boundary diffusion e oxygen mobilities

Predictive models for alloy oxidation are not available
due to the lack of fundamental experimental data
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Leveraging ORNL's high-quality experimental
oxidation data with modern supercomputing
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This project aims to develop predictive models as accurate as
cyclic oxidation experiments relevant to automotive applications
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5 ORNL's 20yrs+ high-quality experimental data
coupled with advanced scientific alloy features
2
[ composition profiie | | oxygen permeabilty |
[ 1D microstructure | | metal cation mobiity |
| 'defect chemistry | | ox:sen m:bilhy |
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e)l(lgg:fn':e;m Advanced features 4
data via supercomputing ORNL Summit
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Proposed workflow is anticipated to go beyond Ni-Cr alloys
(e.g., stainless steel and Ni-Al alloys)
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4 Successtul fraining of preliminary machine
learning models to predict rate constant (k)
O .
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Actual kIO of NiCr alloys

Predictive, but features other than compositions are needed to
better understand fundamental alloy oxidation mechanisms
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Computational
Thermodynamics/
QAK RIDGE Diffusion Kinetics
ational Laboratory
Data Analytics and
( ASM SupercompUTlng

Data
Repository World-class research

teams to develop
alloy oxidation model
with 20+ years data .
and supercomputer / Atfomistic
Simulations

"‘o,y PennState

Finite Element Monthly all-hands conference call,
Analysis biweekly subtask team meetings
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Project will focus on generating alloy features to be
correlated with ORNL's high-quality experimental data

High-throughput High-fidelit :
9 Il gn-Niaciity Data analytics
CALPHAD Atomistic Simulations
» Populate scientific « Generate « Analyze correlation
alloy features fundamental between input
— Depletion of major oxidation data via features and alloy
elements (e.g., Cr) Reactive Force Field oxidation
~ Dissolution of key (ReaxFF) simulations | . Trgin machine
strengthening — Oxygen learning models with
precipitates permeability identified key
— Temperature — Grain boundary features %
excursion diffusion v C
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Develop practical alloy oxidation model with 20yrs+
ORNL data, machine learning and supercomputing
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normal operation temperature
temperature range excursion

Temperature
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Technical Backup



Laboratory simulated 10% water vapor testing
can mimic real combustion environment

oc€‘=ﬁ=ﬁ=ﬂ=!

- S~ e (a) CF8C-P (500h Fumnace
N S cycles: dry air
£ 5 —%. y yan  Good -
*E, \; . oxidation
£ 10~ -‘Q.‘ resistance -
= h L Re in dry air
= a5 VNS, ]
O '\ /Q
@ 20 .

-20 |- \ @0 i
E \ & (b)CFBC-P(100h fumace
0 \ b cycles: air +10% H20)
= [ \ ‘ —
0 \ “ b Poor oxidation
S 30 |- U WY __response il
@ \ W & With water vapor

35 |- b “ ]

- LI N

(c) CF8C-P (1h genset Redl busti
10 cycles: diesel exhaust] ?q com US. ion
0 500 1000 1500 2000

Hours (800°C)
%OAK RIDGE

National Laboratory




Temperature effect on oxidation behavior of
high-temperature alloys
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We propose using k,, (rate constant) and Ty(time/cycle
to spall) to represent oxidation behavior of alloys
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Alloy chemistry and temperature dependent
kK, and T, prediction
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Catalog of ORNL's experimental data for 10%
H,O cyclic oxidation NiCr alloys: total 337 data

Temp (°C) Model alloys Commercial alloy data*

800 32

850 23 15 N80, N90, 31V & 751 (2~4)
R41 & WASPalloy (1)

200 40 45 247 (21), 751,214, 31V, R41, 282, N80 &
WASPalloy (2~4), U520, U720, 230, N90 (1)

950 18 64 751 (11), N8O (9), U520 (6), 247 (5), R41
(5), 214, N90, 246, 713, 282 & U720 (2~4)
230 & WASPalloy (1)

1000 8 246,247 & 713 (2~3), N90 (1)

1050 4

1100 16 42 247 (42)

1150 15 12 247,214, 224 & 230 (2~4), 713 (1)

1200 6 247 (6)

% 0AK RIDGE *() = individual data count
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